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Compression of a set of k-mers
Methods based on k-mers are everywhere

● metagenomics (e.g. Kraken)
● genome assembly (e.g. Spades)
● sequence divergence (e.g. Mash)
● genotyping (e.g VarGeno, MALVA)
● database search (e.g. SBTs)
● variant calling (e.g. Kevlar)
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Methods based on k-mers are everywhere

● metagenomics (e.g. Kraken)
● genome assembly (e.g. Spades)
● sequence divergence (e.g. Mash)
● genotyping (e.g VarGeno, MALVA)
● database search (e.g. SBTs)
● variant calling (e.g. Kevlar)
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12 TB
BIGSI 
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How large can a set of k-mer get?

Non-negligible write 
and load time

High storage cost 
Slower transfer 
across network

Why not just use a membership data-structure?
● Designed to support direct query 
● Dropping this requirement saves space...

★ BOSS and variants
★ BFT
★ Fully dynamic dBGs 
★ UST-Compress

Solution? Disk compression.

31-mers for
450 million microbial genomes



Disk compression of k-mer sets 

Input: k-mer sets

AATT
TTCC
CCTT

Compression

Decompression
Plain text Compressed file on disk

• General purpose compressor 
– gzip, bzip2, lzma

• Special compressor for sequences: already being used to compress reads
– MFCompress, DELIMINATE, NAF

Why not just use popular compressors?

These techniques do not exploit inherent redundancy in k-mer sets fully

Output: compressed 
representation 

– less space on disk
– supports fast decompression

• But no direct query 



Why use “k-mer” compression? Can’t we just compress reads?

>
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● Reads/sequence compression tools:  MFC, DELIMINATE, NAF etc. → X
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● Reads/sequence compression tools:  MFC, DELIMINATE, NAF etc. → X

When k-mer set is not related to reads:

○ universal hitting set (set of k-mers that hit a L-long sequence) (Orenstein et al, 2017)

○ chromosome-specific reference dictionary (Rangavittal et al, 2019)

○ winnowed min-hash sketch (Sahlin et al, 2019)



Given a set of k-mers S, dBG(S) is a directed graph where

● Nodes are the k-mers

● Edge x→y  iff

○ the suffix of length k-1 of x is equal to the prefix of length k-1 of y

(node centric) de Bruijn graph
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Given a set of k-mers S, dBG(S) is a directed graph where

● Nodes are the k-mers

● Edge x→y  iff

○ the suffix of length k-1 of x is equal to the prefix of length k-1 of y

Unitigs:
● Non-branching paths in dBG (gray)
● Spelling of unitigs is a way to represent the k-mers in less space

○ Generalizes to Spectrum-Preserving String Sets (Rahman and Medvedev, RECOMB 2020)
■ contain the same k-mers as S and only contain them once
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ACGG GGA

ACTGG GGTAAAC

ACGGA

AAACTGGT

Spectrum-preserving string sets
A set of strings are called a spectrum-preserving string set (SPSS) representation if

• They contain the same k-mers as S and only contain them once (Rahman and Medvedev, RECOMB 2020, Brinda, 
Baym and Kucherov, 2020)

Representation 1 (unitig based) Representation 2 (SPSS by UST-Compress)

- In our previous work, we proposed a greedy algorithm (UST-Compress) to find low-weight SPSS.

- Now, we take an approach that builds on it.

weight = 19
weight = 13



From SPSS to ESS: Enriched String Set representation

SPSS:
● Only allows DNA characters (A,C,G,T)

ACGG GGA

ACTGG GGTAAAC

ACGGA

AAACTGGT

AAACTGGT
ACGGA AAAC[ACGGA]TGGT

AAAC[+GGA]TGGT

ESS:
● 3 extra character [, ], +



ESS-Compress representation

Absorption edge



ESS-Compress representation

Parent Path

Child Path

Absorption edge
up absorbs uc (ψp absorbs ψc) 
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● Overall (k-4) characters saved
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One path absorbs multiple paths

ESS-Compress representation: more examples

Recursive absorption



Algorithm to compute ESS-Compress representation

Which absorption edges should be chosen? In what order?

 CGTTAGCG
 GTACG
 AGT

SPSS Representation

 

CGT[+ACG]TAG[+T]GCG
 
 

ESS-Compress Representation



Algorithm to compute ESS-Compress representation

Absorption digraph
● Vertices are paths in compacted dBG
● Edge from path ψ
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 to path ψ
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 if
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C
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ESS-Compress Representation
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○ Analog of MST in directed graph 

Which absorption edges should be chosen? In what order?

x

 CGTTAGCG
 GTACG
 AGT

 

CGT[+ACG]TAG[+T]GCG
 
 

x

x

x



SPSS Representation

Algorithm to compute ESS-Compress representation

Absorption digraph
● Vertices are paths in compacted dBG
● Edge from path ψ

P
 to path ψ

C
 if

○ There is an absorption edge from ψ
P
 to ψ

C
  

ESS-Compress Representation

edge-maximizing spanning 
out-forest in red

Which absorption edges should be chosen? In what order?

● We give an algorithm 

○ DFS-based

○ linear time

○ returns out-forest with maximal edges 

and minimal number of out-trees

● Compute edge-maximizing spanning out-forest
○ Analog of MST in directed graph 

x
x
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ψ
C2

ψ
P

xx

x
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Weight and lower bound of ESS-Compress representation

weight of ESS solution = |K| + 3|ψ| + n
sc

(k - 4)
●  |K| = n. of k-mers
●  |ψ| = n. of paths in path cover
●  n

sc
 = n. of source in strongly connected 

component metagraph  

 TCAAAATT
 CAAAG
 AAATCG

TCAAA[+G]AT[+CG]T 

Compress

SPSS ESS-Compress representation

Decompress

|ψ| = 3

AAATTAAAATCAAAATCAAA

CAAAG AAATC AATCG

AAATTCAAAATTCAAA

CAAAG AAATCG

weight = 19 weight = 17

 k = 5

|K| = 7

n
sc 

= 1
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Weight and lower bound of ESS-Compress representation

weight of ESS solution = |K| + 3|ψ| + n
sc

(k - 4)
●  |K| = n. of k-mers
●  |ψ| = n. of paths in path cover
●  n

sc
 = n. of source in strongly connected 

component metagraph  

Possible modifications within ESS compress framework
●  choosing different starting path cover
●  choose different edges as absorption edges

 
Lower bound within this framework

● weight >= |K| + 3B + C(k - 4)
○ B = lower bound of SPSS
○ C = # connected components in cdbG
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ESS-Tip-Compress: a faster and simpler alternative 

• ESS-compress can take a lot of memory because of recursion
• Observe that datasets have a large number of tips
• ESS-Tip-Compress

– non-recursive
– finds path cover of the graph minus tips
– absorb tips into the path

CTCGTT  CTC{T{GT}A}T

ESS-Tip-Compress representationSPSS without tips

Tip Tip



RESULTS
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Compressed File Size

ESS-Compress uses less space

• 6-27% smaller than UST-Compress
• 7-10% smaller than ESS-Tip-Compress
• Order-of-magnitude less than 

○ MFC-compressed FASTA 
○ Plaintext with one k-mer per line

CATT[+C]G
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● Compression time 

● Compression memory:

○ For largest dataset, peak memory

■ ESS-Compress = 42 GB 

■ ESS-Tip-Compress = 11 GB 

○ For other datasets:

■ ESS-Compress < 10 GB

■ ESS-Tip-Compress  < 3 GB

● Decompression memory:

○ ESS-Compress < 0.7 GB

○ ESS-Tip-Compress < 0.5 GB  

● Decompression Time:

○ For large dataset: < 10 min 

○ For others: < 2 min

● Advantage of ESS-Tip-Compress

○ Compression memory and time: 

■ UST-Compress ≈ ESS-Tip-Compress  ≪ ESS-Compress

○ Only 7-10% worse than ESS-Compress in  compression size 

■ Reasonable trade-off

Time and memory

C
om

pr
es
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on
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● ESS-Compress reduces space
○ Order-of-magnitude smaller than MFC-compressed FASTA and plaintext with one k-mer per line
○ 6-27% smaller than UST-Compress
○ Nearly optimal (< 1.7% gap) within its class.  

● Efficient 
○ Compression < 20 minutes for medium sized datasets
○ Decompression < 1 minute 

● ESS-Tip-Compress: a simpler alternative
○ Time and memory: UST-Compress ≈ ESS-Tip-Compress  ≪ ESS-Compress
○ Compressed size: only 7-10% worse than ESS-Compress 

● Acknowledgments
○ NSF awards 1453527 and 1439057 
○ NIH Computation, Bioinformatics, and Statistics (CBIOS) training program

● Software availability: github.com/medvedevgroup/ESSCompress

Summary
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Effect of varying k on compression performance on human RNA-seq data

● Weight of ESS-Compress closely matches lower bound (< 2.4% gap) 

● Better compression when 

■ k reduces

■ abundance threshold increases 

○ Due to decrease in # connected components in dbG

Dashed lines represent empirical lower bound

Lower bound of weight 
= |K| + 3B + C(k - 4)

B = lower bound of SPSS
C = # connected components in cdbG
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Spanning out-forest

out-tree Directed graph, with spanning out-forest in red

But this is not optimal:
- possible to increase 

number of edges 

An out-tree in a directed graph D is a subgraph where
● every vertex except a single root, has in-degree 1
● the underlying undirected graph is a tree. 

An out-forest is a collection of vertex-disjoint out-trees. 
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We give an algorithm to find an optimal spanning out-forest 

● We prove that it gives the maximal edges and minimal number of trees

○ a specific instance of the maximum weight out-forest problem

Optimal
- Maximal edges
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