
Disk compression of k-mer sets

Workshop on Compression, Text and Algorithms
(WCTA 2021)

Amatur Rahman1, Rayan Chikhi2, Paul Medvedev1,3,4

1Department of Computer Science and Engineering, Penn State
2Department of Computational Biology, C3BI USR 3756 CNRS, Institut Pasteur, Paris, France

3Department of Biochemistry and Molecular Biology, Penn State
4Center for Computational Biology and Bioinformatics, Penn State

Compression of a set of k-mers
Methods based on k-mers are everywhere

● metagenomics (e.g. Kraken)
● genome assembly (e.g. Spades)
● sequence divergence (e.g. Mash)
● genotyping (e.g VarGeno, MALVA)
● database search (e.g. SBTs)
● variant calling (e.g. Kevlar)

AATCCGTT

AATC
AATCC
AATCCGT
AATCCGTT

Compression of a set of k-mers
Methods based on k-mers are everywhere

● metagenomics (e.g. Kraken)
● genome assembly (e.g. Spades)
● sequence divergence (e.g. Mash)
● genotyping (e.g VarGeno, MALVA)
● database search (e.g. SBTs)
● variant calling (e.g. Kevlar)

AATCCGTT

AATC
AATCC
AATCCGT
AATCCGTT

12 TB
31-mers for
450 million microbial genomes

BIGSI
Database

How large can a set of k-mer get?

Compression of a set of k-mers
Methods based on k-mers are everywhere

● metagenomics (e.g. Kraken)
● genome assembly (e.g. Spades)
● sequence divergence (e.g. Mash)
● genotyping (e.g VarGeno, MALVA)
● database search (e.g. SBTs)
● variant calling (e.g. Kevlar)

AATCCGTT

AATC
AATCC
AATCCGT
AATCCGTT

12 TB
BIGSI
Database

How large can a set of k-mer get?

Non-negligible write
and load time

High storage cost
Slower transfer
across network

31-mers for
450 million microbial genomes

Compression of a set of k-mers
Methods based on k-mers are everywhere

● metagenomics (e.g. Kraken)
● genome assembly (e.g. Spades)
● sequence divergence (e.g. Mash)
● genotyping (e.g VarGeno, MALVA)
● database search (e.g. SBTs)
● variant calling (e.g. Kevlar)

AATCCGTT

AATC
AATCC
AATCCGT
AATCCGTT

12 TB
BIGSI
Database

How large can a set of k-mer get?

Solution? Disk compression.

Non-negligible write
and load time

High storage cost
Slower transfer
across network

31-mers for
450 million microbial genomes

Compression of a set of k-mers
Methods based on k-mers are everywhere

● metagenomics (e.g. Kraken)
● genome assembly (e.g. Spades)
● sequence divergence (e.g. Mash)
● genotyping (e.g VarGeno, MALVA)
● database search (e.g. SBTs)
● variant calling (e.g. Kevlar)

AATCCGTT

AATC
AATCC
AATCCGT
AATCCGTT

12 TB
BIGSI
Database

How large can a set of k-mer get?

Non-negligible write
and load time

High storage cost
Slower transfer
across network

Why not just use a membership data-structure?
● Designed to support direct query
● Dropping this requirement saves space...

★ BOSS and variants
★ BFT
★ Fully dynamic dBGs
★ UST-Compress

Solution? Disk compression.

31-mers for
450 million microbial genomes

Disk compression of k-mer sets

Input: k-mer sets

AATT
TTCC
CCTT

Compression

Decompression
Plain text Compressed file on disk

• General purpose compressor
– gzip, bzip2, lzma

• Special compressor for sequences: already being used to compress reads
– MFCompress, DELIMINATE, NAF

Why not just use popular compressors?

These techniques do not exploit inherent redundancy in k-mer sets fully

Output: compressed
representation

– less space on disk
– supports fast decompression

• But no direct query

Why use “k-mer” compression? Can’t we just compress reads?

>
ACGTTTTTT
>
AAA

X - Compress

Compression Process

Decompression Process

X - Decompress
>
ACGTTTTTT
>
AAA

Reads in FASTA-format Compressed file on disk

k-mer counter tool

ACG
CGT
GTT
TTT
AAA

● Reads/sequence compression tools: MFC, DELIMINATE, NAF etc. → X

Why use “k-mer” compression? Can’t we just compress reads?

>
ACGTTTTTT
>
AAA

X - Compress

Compression Process

Decompression Process

X - Decompress
>
ACGTTTTTT
>
AAA

Reads in FASTA-format Compressed file on disk

k-mer counter tool

ACG
CGT
GTT
TTT
AAA

Overhead of running
k-mer counter as part of

decompression

● Reads/sequence compression tools: MFC, DELIMINATE, NAF etc. → X

Why use “k-mer” compression? Can’t we just compress reads?

>
ACGTTTTTT
>
AAA

X - Compress

Compression Process

Decompression Process

X - Decompress
>
ACGTTTTTT
>
AAA

Reads in FASTA-format Compressed file on disk

k-mer counter tool

ACG
CGT
GTT
TTT
AAA

Overhead of running
k-mer counter as part of

decompression

● Reads/sequence compression tools: MFC, DELIMINATE, NAF etc. → X

When k-mer set is not related to reads:

○ universal hitting set (set of k-mers that hit a L-long sequence) (Orenstein et al, 2017)

○ chromosome-specific reference dictionary (Rangavittal et al, 2019)

○ winnowed min-hash sketch (Sahlin et al, 2019)

Given a set of k-mers S, dBG(S) is a directed graph where

● Nodes are the k-mers

● Edge x→y iff

○ the suffix of length k-1 of x is equal to the prefix of length k-1 of y

(node centric) de Bruijn graph

ACG
GGA

CTG GGTACT

CGG

AAA AAC

TGG

Given a set of k-mers S, dBG(S) is a directed graph where

● Nodes are the k-mers

● Edge x→y iff

○ the suffix of length k-1 of x is equal to the prefix of length k-1 of y

(node centric) de Bruijn graph

ACG
GGA

CTG GGTACT

CGG

AAA AAC

TGG

Given a set of k-mers S, dBG(S) is a directed graph where

● Nodes are the k-mers

● Edge x→y iff

○ the suffix of length k-1 of x is equal to the prefix of length k-1 of y

(node centric) de Bruijn graph

ACG
GGA

CTG GGTACT

CGG

AAA AAC

TGG

ACGG

Given a set of k-mers S, dBG(S) is a directed graph where

● Nodes are the k-mers

● Edge x→y iff

○ the suffix of length k-1 of x is equal to the prefix of length k-1 of y

(node centric) de Bruijn graph

ACG
GGA

CTG GGTACT

CGG

AAA AAC

TGG

ACGG

ACTGG

Given a set of k-mers S, dBG(S) is a directed graph where

● Nodes are the k-mers

● Edge x→y iff

○ the suffix of length k-1 of x is equal to the prefix of length k-1 of y

Unitigs:
● Non-branching paths in dBG (gray)

(node centric) de Bruijn graph

ACG
GGA

CTG GGTACT

CGG

AAA AAC

TGG

ACGG

ACTGG
AAAC

GGT

GGA

Given a set of k-mers S, dBG(S) is a directed graph where

● Nodes are the k-mers

● Edge x→y iff

○ the suffix of length k-1 of x is equal to the prefix of length k-1 of y

Unitigs:
● Non-branching paths in dBG (gray)
● Spelling of unitigs is a way to represent the k-mers in less space

○ Generalizes to Spectrum-Preserving String Sets (Rahman and Medvedev, RECOMB 2020)
■ contain the same k-mers as S and only contain them once

(node centric) de Bruijn graph

ACG
GGA

CTG GGTACT

CGG

AAA AAC

TGG

ACGG

ACTGG
AAAC

GGT

GGA

ACGG GGA

ACTGG GGTAAAC

ACGGA

AAACTGGT

Spectrum-preserving string sets
A set of strings are called a spectrum-preserving string set (SPSS) representation if

• They contain the same k-mers as S and only contain them once (Rahman and Medvedev, RECOMB 2020, Brinda,
Baym and Kucherov, 2020)

Representation 1 (unitig based) Representation 2 (SPSS by UST-Compress)

- In our previous work, we proposed a greedy algorithm (UST-Compress) to find low-weight SPSS.

- Now, we take an approach that builds on it.

weight = 19
weight = 13

From SPSS to ESS: Enriched String Set representation

SPSS:
● Only allows DNA characters (A,C,G,T)

ACGG GGA

ACTGG GGTAAAC

ACGGA

AAACTGGT

AAACTGGT
ACGGA AAAC[ACGGA]TGGT

AAAC[+GGA]TGGT

ESS:
● 3 extra character [,], +

ESS-Compress representation

Absorption edge

ESS-Compress representation

Parent Path

Child Path

Absorption edge
up absorbs uc (ψp absorbs ψc)

ESS-Compress representation

up absorbs uc (ψp absorbs ψc)

Absorption process
● Adds 3 extra characters: [, +,]
● Reduces (k-1) characters
● Overall (k-4) characters saved

Parent Path

Child Path

Absorption edge

ESS-Compress representation

up absorbs uc (ψp absorbs ψc)

Absorption process
● Adds 3 extra characters: [, +,]
● Reduces (k-1) characters
● Overall (k-4) characters saved

Parent Path

Child Path

Absorption edge

One path absorbs multiple paths

ESS-Compress representation: more examples

Recursive absorption

Algorithm to compute ESS-Compress representation

Which absorption edges should be chosen? In what order?

 CGTTAGCG
 GTACG
 AGT

SPSS Representation

CGT[+ACG]TAG[+T]GCG

ESS-Compress Representation

Algorithm to compute ESS-Compress representation

Absorption digraph
● Vertices are paths in compacted dBG
● Edge from path ψ

P
 to path ψ

C
 if

○ There is an absorption edge from ψ
P
 to ψ

C

Which absorption edges should be chosen? In what order?

 CGTTAGCG
 GTACG
 AGT

SPSS Representation

CGT[+ACG]TAG[+T]GCG

ESS-Compress Representation

ψ
C1

ψ
C2

ψ
P

x
x

ψ
C1

ψ
C2

ψ
P

SPSS Representation

Algorithm to compute ESS-Compress representation

Absorption digraph
● Vertices are paths in compacted dBG
● Edge from path ψ

P
 to path ψ

C
 if

○ There is an absorption edge from ψ
P
 to ψ

C

ESS-Compress Representation

Which absorption edges should be chosen? In what order?

 CGTTAGCG
 GTACG
 AGT

CGT[+ACG]TAG[+T]GCG

x

x

x

x

x
x

ψ
C1

ψ
C2

ψ
P

SPSS Representation

Algorithm to compute ESS-Compress representation

Absorption digraph
● Vertices are paths in compacted dBG
● Edge from path ψ

P
 to path ψ

C
 if

○ There is an absorption edge from ψ
P
 to ψ

C

ESS-Compress Representation

● Compute edge-maximizing spanning out-forest
○ Analog of MST in directed graph

Which absorption edges should be chosen? In what order?

x

 CGTTAGCG
 GTACG
 AGT

CGT[+ACG]TAG[+T]GCG

x

x

x

SPSS Representation

Algorithm to compute ESS-Compress representation

Absorption digraph
● Vertices are paths in compacted dBG
● Edge from path ψ

P
 to path ψ

C
 if

○ There is an absorption edge from ψ
P
 to ψ

C

ESS-Compress Representation

edge-maximizing spanning
out-forest in red

Which absorption edges should be chosen? In what order?

● We give an algorithm

○ DFS-based

○ linear time

○ returns out-forest with maximal edges

and minimal number of out-trees

● Compute edge-maximizing spanning out-forest
○ Analog of MST in directed graph

x
x

ψ
C1

ψ
C2

ψ
P

xx

x

 CGTTAGCG
 GTACG
 AGT

CGT[+ACG]TAG[+T]GCG

x

Weight and lower bound of ESS-Compress representation

weight of ESS solution = |K| + 3|ψ| + n
sc

(k - 4)
● |K| = n. of k-mers
● |ψ| = n. of paths in path cover
● n

sc
 = n. of source in strongly connected

component metagraph

 TCAAAATT
 CAAAG
 AAATCG

TCAAA[+G]AT[+CG]T

Compress

SPSS ESS-Compress representation

Decompress

|ψ| = 3

AAATTAAAATCAAAATCAAA

CAAAG AAATC AATCG

AAATTCAAAATTCAAA

CAAAG AAATCG

weight = 19 weight = 17

 k = 5

|K| = 7

n
sc

= 1

Weight and lower bound of ESS-Compress representation

weight of ESS solution = |K| + 3|ψ| + n
sc

(k - 4)
● |K| = n. of k-mers
● |ψ| = n. of paths in path cover
● n

sc
 = n. of source in strongly connected

component metagraph

Possible modifications within ESS compress framework
● choosing different starting path cover
● choose different edges as absorption edges

 TCAAAATT
 CAAAG
 AAATCG

TCAAA[+G]AT[+CG]T

Compress

SPSS ESS-Compress representation

Decompress

|ψ| = 3

AAATTAAAATCAAAATCAAA

CAAAG AAATC AATCG

AAATTCAAAATTCAAA

CAAAG AAATCG

AAATTCAAAATTCAAA

CAAAG AAATCG
|ψ| = 4

weight = 19 weight = 17

 k = 5

|K| = 7

n
sc

= 1

Weight and lower bound of ESS-Compress representation

weight of ESS solution = |K| + 3|ψ| + n
sc

(k - 4)
● |K| = n. of k-mers
● |ψ| = n. of paths in path cover
● n

sc
 = n. of source in strongly connected

component metagraph

Possible modifications within ESS compress framework
● choosing different starting path cover
● choose different edges as absorption edges

Lower bound within this framework

● weight >= |K| + 3B + C(k - 4)
○ B = lower bound of SPSS
○ C = # connected components in cdbG

 TCAAAATT
 CAAAG
 AAATCG

TCAAA[+G]AT[+CG]T

Compress

SPSS ESS-Compress representation

Decompress

weight = 19weight = 17

|ψ| = 3
n

sc
= 1

C < n
sc

B < |ψ|

AAATTAAAATCAAAATCAAA

CAAAG AAATC AATCG

C

= 1

AAATTCAAAATTCAAA

CAAAG AAATCG

AAATTCAAAATTCAAA

CAAAG AAATCG
|ψ| = 4

weight = 19 weight = 17

C

= 1

n
sc

= 1

 k = 5

|K| = 7

ESS-Tip-Compress: a faster and simpler alternative

• ESS-compress can take a lot of memory because of recursion
• Observe that datasets have a large number of tips
• ESS-Tip-Compress

– non-recursive
– finds path cover of the graph minus tips
– absorb tips into the path

CTCGTT CTC{T{GT}A}T

ESS-Tip-Compress representationSPSS without tips

Tip Tip

RESULTS

*111
mil.

*165
mil.

*2
bil.

*101
mil.

*101
mil.

* number of distinct 31-mers

Size of k-mer set representation

….on sequencing datasets

ESS uses less characters
• 13-42% better than UST
• 7-10% better than ESS-Tip

ESS-Tip
• more characters than ESS
• still better than UST

ESS is nearly optimal with respect to lower bound
• < 1.7% gap

Compressed File Size

ESS-Compress uses less space

• 6-27% smaller than UST-Compress
• 7-10% smaller than ESS-Tip-Compress
• Order-of-magnitude less than

○ MFC-compressed FASTA
○ Plaintext with one k-mer per line

CATT[+C]G
CAT
ATT
TTG
TTC

ESS
Representation

MFCompress

*111
mil.

*165
mil.

*2
bil.

*101
mil.

*101
mil.

* number of distinct 31-mers

Size of k-mer set representation

….on sequencing datasets

ESS uses less characters
• 13-42% better than UST
• 7-10% better than ESS-Tip

ESS-Tip
• more characters than ESS
• still better than UST

ESS is nearly optimal with respect to lower bound
• < 1.7% gap

● Compression time

● Compression memory:

○ For largest dataset, peak memory

■ ESS-Compress = 42 GB

■ ESS-Tip-Compress = 11 GB

○ For other datasets:

■ ESS-Compress < 10 GB

■ ESS-Tip-Compress < 3 GB

● Decompression memory:

○ ESS-Compress < 0.7 GB

○ ESS-Tip-Compress < 0.5 GB

● Decompression Time:

○ For large dataset: < 10 min

○ For others: < 2 min

● Advantage of ESS-Tip-Compress

○ Compression memory and time:

■ UST-Compress ≈ ESS-Tip-Compress ≪ ESS-Compress

○ Only 7-10% worse than ESS-Compress in compression size

■ Reasonable trade-off

Time and memory

C
om

pr
es

si
on

*111
mil.

*165
mil.

*2
bil.

*101
mil.

*101
mil.

* number of distinct 31-mers

● ESS-Compress reduces space
○ Order-of-magnitude smaller than MFC-compressed FASTA and plaintext with one k-mer per line
○ 6-27% smaller than UST-Compress
○ Nearly optimal (< 1.7% gap) within its class.

● Efficient
○ Compression < 20 minutes for medium sized datasets
○ Decompression < 1 minute

● ESS-Tip-Compress: a simpler alternative
○ Time and memory: UST-Compress ≈ ESS-Tip-Compress ≪ ESS-Compress
○ Compressed size: only 7-10% worse than ESS-Compress

● Acknowledgments
○ NSF awards 1453527 and 1439057
○ NIH Computation, Bioinformatics, and Statistics (CBIOS) training program

● Software availability: github.com/medvedevgroup/ESSCompress

Summary

Supplementary Slides

Effect of varying k on compression performance on human RNA-seq data

● Weight of ESS-Compress closely matches lower bound (< 2.4% gap)

● Better compression when

■ k reduces

■ abundance threshold increases

○ Due to decrease in # connected components in dbG

Dashed lines represent empirical lower bound

Lower bound of weight
= |K| + 3B + C(k - 4)

B = lower bound of SPSS
C = # connected components in cdbG

Spanning out-forest
An out-tree in a directed graph D is a subgraph where

● every vertex except a single root, has in-degree 1
● the underlying undirected graph is a tree.

out-tree

Spanning out-forest
An out-tree in a directed graph D is a subgraph where

● every vertex except a single root, has in-degree 1
● the underlying undirected graph is a tree.

An out-forest is a collection of vertex-disjoint out-trees.
● An out-forest is spanning if it covers all the vertices of D

out-tree

Spanning out-forest
An out-tree in a directed graph D is a subgraph where

● every vertex except a single root, has in-degree 1
● the underlying undirected graph is a tree.

An out-forest is a collection of vertex-disjoint out-trees.
● An out-forest is spanning if it covers all the vertices of D

out-tree Directed graph

Spanning out-forest

out-tree Directed graph, with spanning out-forest in red

But this is not optimal:
- possible to increase

number of edges

An out-tree in a directed graph D is a subgraph where
● every vertex except a single root, has in-degree 1
● the underlying undirected graph is a tree.

An out-forest is a collection of vertex-disjoint out-trees.
● An out-forest is spanning if it covers all the vertices of D

Spanning out-forest
An out-tree in a directed graph D is a subgraph where

● every vertex except a single root, has in-degree 1
● the underlying undirected graph is a tree.

An out-forest is a collection of vertex-disjoint out-trees.
● An out-forest is spanning if it covers all the vertices of D

out-tree Directed graph, with spanning out-forest in red

We give an algorithm to find an optimal spanning out-forest

● We prove that it gives the maximal edges and minimal number of trees

○ a specific instance of the maximum weight out-forest problem

Optimal
- Maximal edges

Spanning out-forest
An out-tree in a directed graph D is a subgraph where

● every vertex except a single root, has in-degree 1
● the underlying undirected graph is a tree.

An out-forest is a collection of vertex-disjoint out-trees.
● An out-forest is spanning if it covers all the vertices of D

out-tree
Algorithm to find edge-maximizing spanning out-forest

Source
component

Source
component

We give an algorithm to find an optimal spanning out-forest

● We prove that it gives the maximal edges and minimal number of trees

○ a specific instance of the maximum weight out-forest problem

Spanning out-forest
An out-tree in a directed graph D is a subgraph where

● every vertex except a single root, has in-degree 1
● the underlying undirected graph is a tree.

An out-forest is a collection of vertex-disjoint out-trees.
● An out-forest is spanning if it covers all the vertices of D

out-tree

Source
component

Source
component

Algorithm to find edge-maximizing spanning out-forest

We give an algorithm to find an optimal spanning out-forest

● We prove that it gives the maximal edges and minimal number of trees

○ a specific instance of the maximum weight out-forest problem

Spanning out-forest
An out-tree in a directed graph D is a subgraph where

● every vertex except a single root, has in-degree 1
● the underlying undirected graph is a tree.

An out-forest is a collection of vertex-disjoint out-trees.
● An out-forest is spanning if it covers all the vertices of D

out-tree

Source
component

Source
component

Algorithm to find edge-maximizing spanning out-forest

We give an algorithm to find an optimal spanning out-forest

● We prove that it gives the maximal edges and minimal number of trees

○ a specific instance of the maximum weight out-forest problem

Spanning out-forest
An out-tree in a directed graph D is a subgraph where

● every vertex except a single root, has in-degree 1
● the underlying undirected graph is a tree.

An out-forest is a collection of vertex-disjoint out-trees.
● An out-forest is spanning if it covers all the vertices of D

out-tree

Source
component

Source
component

Algorithm to find edge-maximizing spanning out-forest

We give an algorithm to find an optimal spanning out-forest

● We prove that it gives the maximal edges and minimal number of trees

○ a specific instance of the maximum weight out-forest problem

Spanning out-forest
An out-tree in a directed graph D is a subgraph where

● every vertex except a single root, has in-degree 1
● the underlying undirected graph is a tree.

An out-forest is a collection of vertex-disjoint out-trees.
● An out-forest is spanning if it covers all the vertices of D

out-tree

Source
component

Source
component

Algorithm to find edge-maximizing spanning out-forest

We give an algorithm to find an optimal spanning out-forest

● We prove that it gives the maximal edges and minimal number of trees

○ a specific instance of the maximum weight out-forest problem

Spanning out-forest
An out-tree in a directed graph D is a subgraph where

● every vertex except a single root, has in-degree 1
● the underlying undirected graph is a tree.

An out-forest is a collection of vertex-disjoint out-trees.
● An out-forest is spanning if it covers all the vertices of D

out-tree

Source
component

Source
component

Algorithm to find edge-maximizing spanning out-forest

We give an algorithm to find an optimal spanning out-forest

● We prove that it gives the maximal edges and minimal number of trees

○ a specific instance of the maximum weight out-forest problem

Spanning out-forest
An out-tree in a directed graph D is a subgraph where

● every vertex except a single root, has in-degree 1
● the underlying undirected graph is a tree.

An out-forest is a collection of vertex-disjoint out-trees.
● An out-forest is spanning if it covers all the vertices of D

out-tree

Source
component

Source
component

Algorithm to find edge-maximizing spanning out-forest

We give an algorithm to find an optimal spanning out-forest

● We prove that it gives the maximal edges and minimal number of trees

○ a specific instance of the maximum weight out-forest problem

Spanning out-forest
An out-tree in a directed graph D is a subgraph where

● every vertex except a single root, has in-degree 1
● the underlying undirected graph is a tree.

An out-forest is a collection of vertex-disjoint out-trees.
● An out-forest is spanning if it covers all the vertices of D

out-tree

Source
component

Source
component

Algorithm to find edge-maximizing spanning out-forest

We give an algorithm to find an optimal spanning out-forest

● We prove that it gives the maximal edges and minimal number of trees

○ a specific instance of the maximum weight out-forest problem

Spanning out-forest
An out-tree in a directed graph D is a subgraph where

● every vertex except a single root, has in-degree 1
● the underlying undirected graph is a tree.

An out-forest is a collection of vertex-disjoint out-trees.
● An out-forest is spanning if it covers all the vertices of D

out-tree

Source
component

Source
component

Algorithm to find edge-maximizing spanning out-forest

We give an algorithm to find an optimal spanning out-forest

● We prove that it gives the maximal edges and minimal number of trees

○ a specific instance of the maximum weight out-forest problem

Spanning out-forest
An out-tree in a directed graph D is a subgraph where

● every vertex except a single root, has in-degree 1
● the underlying undirected graph is a tree.

An out-forest is a collection of vertex-disjoint out-trees.
● An out-forest is spanning if it covers all the vertices of D

out-tree

Source
component

Source
component

Algorithm to find edge-maximizing spanning out-forest

We give an algorithm to find an optimal spanning out-forest

● We prove that it gives the maximal edges and minimal number of trees

○ a specific instance of the maximum weight out-forest problem

